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The problem of mixed convectlon on a wedge in a saturated porous medium is analyzed 
using the Darcy flow formulation and three different methods of solution. Nonsimilar 
solutions are obtained for several wedge angles. The nonsimllarity technique is applied 
to the boundary layer formulation, and the finite element method is used in both 
formulations. It is shown that both formulations produce results that agree well for Pe = 1 
and uniform wall temperature in the range 0.1 5 Ra/Pe < 100. The local and average 
Nusselt numbers are calculated for several geometries. Relative to the progress docu- 
mented in the literature, new solutions are presented for m = l/3, l/2 and 1 (i.e., wedge 
half angles ;’ = 45 , 60 , and 90 ). It is shown that the overall heat-transfer rate is the 
largest when the wedge angle is zero, and the walls are oriented vertically. 
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Introduction 

The phenomenon investigated in this paper was Inspired b> 
such current energy applications as geothermal energy 
technology and underground disposal of chemical and nuclear 
waste (Lai et al. 1991). The inJection and removal of the 
geothermal flutds involved in those processes induce pressure 
gradients that give rise to an imposed external flow. The 
problem of combined free and forced convection that results 
has been studied by several authors. Cheng (1977) presented 
solutions for two particular cases of mixed convection on ;I 
wedge in a porous medium (where the problem admits 
similarity solutions): namely. the vertical isothermal plate and 
the 90 wedge with constant heat flux. Mcrkin (1980) used a 
perturbation method to study the vertical wall with uniform 
heat flux. where a similarity solution does not exist, and. later. 
Joshi and Gebhart (1985) presented a solution to the same 
problem using the method of matched asymptotic expansions. 
Both approaches relied on boundary-layer approximations. 
and their validity at low Rayleigh numbers is questionable. 

Cheng and Chang (1979). Chang and Cheng (1983). Cheng 
and Hsu (1984). and Joshi and Gebhart (1984) invcstigatcd. for 
natural convection on a vertical well and on a horizontal 
surface, the effects of entrainment from the edge of the 
boundary layer; the axial heat conduction, and the normal 
pressure gradient. all of them neglected by boundary-layer 
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theory. They used a perturbation series method, finding that 
for small wall temperature variations. the boundary-layer 
theory is quite accurate, even at small Rayleigh numbers. The 
same agreement does not occur for the case of uniform wall 
heat flux, as was shown by Pop et al. (1989). At the same time. 
for high Rayleigh numbers, the validity of Darcy’s law is 
questionable, because non-Darcy effects such as inertia become 
important. as was demonstrated by Poulikakos and Bejan 
(19X5). Also. boundary friction effects have to be considered for 
high Rayleigh numbers, as was shown by Kim and Vafai (1989) 
for natural convection about a vertical plate. These points are 
discussed at length in Nield and Bejan (1992). A review of the 
research performed on this topic during the last 20 years was 
presented in Lai ct al. (1991). 

The objectives of this paper are: (I) to present new solutions 
for several wedge angles in complete Darcy formulation. which 
lead to nonsimilarity problems: (2) to verify the accuracy of the 
boundary-laver formulation results for low Rayleigh numbers, 
where DarcTs law is considered a good model for the problem; 
and (3) to determine the geometry where heat transfer is 
maximum. 

Assuming Darcy’s law. numerical solutions are obtained with 
the local nonsimilarity method and a formulation that results 
from boundary-layer approximations. A Galerkin finite 
element method is applied both to the boundary layer and to 
the complete Darcy formulations. In this way, the accuracy of 
the method of boundary-layer approximations for low Rayleigh 
numbers is investigated. The local and wall-averaged Nusselt 
numbers are then computed. Relative to the progress 
documented in the literature, new solutions are obtained for 
the wedge with uniform wall temperature and WI = l/3, l/2 and 
1 (i.c.. ;’ = 45 . 60 , and 90 ). 
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Theoretical model m*, 

Figure I shows a simple sketch of the problem configuration. 
The governing equations for convection through a homogen- 
eous porous medium are as follows: 

v.v=o (11 
v 

!p 
, 

/:u, ,,,’ : 
c 

‘7 

$ v - (VP + pv,) 

V.VT = V.(xVT) (3) 

The assumptions in derivaing Equations I 3 arc that the fluid 
and the porous medium are in local thermodynamic 
equilibrium. the fluid temperature IS below3 the boiling point. 
the fluid properties are homogeneous and isotroptc, and the 
local Reynolds number based on averaged velocity and K’ ’ 
does not exceed O(1). which means that Darcy’s law is valid. 
The boundary conditions are as follows: 

Ffgure 1 Problem confrguration 

y=o: c = 0. r, = constant (41 Formulation with boundary-layer simplifications 

y + x: u = u,. T= T, (51 A new set of transformed equations is obtained from Equations 
I-5 by invoking the Oberbeck-Boussinesq approximation, 
boundary-layer hypothesis. and by defining the following 
variables based on scale analysis and the streamfunction Y 

The plus sign in Equation 3 accounts for aidtng fows and the 
minus sign for opposing Rows. 

Notation 

A constant 
B constant 
d solution vector 
e Euclidian unit vpector 
.f dimensionless function. 

Equation I 
9 gravitational acceleration, m s2 
I? dimensionless function, if ?< 
H wall height, m 
H’ functions that sattsfy &\v’t’drl < I~ 
IN element integrals of the shape functions. Equations 

2993 1 
k thermal conductivity. W srn K 
K permeability. m2 
m wedge angle parameter. ;‘ (n - ;‘) 
M capacity matrix 
I? exponent, Equation 43 
n wall temperature parameter 
.v element shape functions 
Nu wall-averaged Nusselt number, Equation 14 
Nu, local Nusselt number. Equation 12 
P pressure, N/m2 
P dimensionless pressure, Equation I7 
Pe Peclet number, c’ , H ‘z 
Pe, local Peclet number. I:, Y Y 
4” heat flux, W;rn’ 
Q stiffness matrix 
R residual vector 
Ra Darcy-modified Rayleigh number, 

Kg,/IHAT:‘(rv) 
Ra, Darcy-modified local Rayleigh number, 

Kg,flHATi(~v) 
T temperature, K 
TW wall temperature. B.x” + T I 
ujl free-stream velocity. A.? 
u, 1 velocity components, m s 

L’. I’ dtmensionlcss v*elocity components 
v v,elocity vector, m:s 
v dimenstonlcss velocity v*cctor 
II wcighttng function 
x, I Cartesian coordinates. m 
x: Y dimensionless coordinates 

Gwdi 

% ctfectivc thermal diffusiv*ity of the porous medium, 
rn’ s 

/i coetficient of volumetric thermal expansion, K - ’ 
I- dimensionless function. Equation 33 
.I 
id 

half of the wedge angle 
Yewton correction for the solution vector 

A’1 similarity variable step 
A< nonsimilarity variable step 

element natural coordinate,- 1 I 1; I 1 
‘1 similarity variable. Equation 6 
0 dimensionless temperature, Equation 7 
1’ viscosity. kg/m. s 
I’ kinematic viscosity, m’s 

nonsimilarity variable. Equation 6 
;; density, kg$(m” 
(1) dimensionless function,?&:?< 
Y dimensionless function. Equation 7 
I/ weighting space 

SlrpL”“‘~ripfs 

( VL Newton iteration 
1 Y” ttme-like increment 
( I’ derivatives with respect to ye 

Shsuipfs 

fluid reservoir 
Cartesian components, 1 I i i 2 
element node. 1 I u I 3 
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definition u = iW:i~~ and r = - iY/i\- (Bejan, 19x4). 

(61 

T = (C’ , .xz)l 2/j;. q); 01,‘. I\) = 
T- T, 

17) 
r,, - T, 

The transformed equations are as follows: 

.f‘” = * <f? (8) 

subject to the following transformed boundary condittons 

fl = 0: .f =o; 0 = 1 (IO) 

r/ + xy1: 1” = 1 ; 0 = 0 Ill) 

The local Nusselt number Nu, = y”(.~. 0) li(7,, ~ T, ) is given 
by the following: 

Nu.x 
Pet ’ 

= -O’(i’, 0) (12) 

The nonsimilarity parameter < determines whether the physical c-0 
phenomenon is one of forced. mixed. or free convection. Nu,, = - 

ii iY ,=” 
(23) 

Formulation without boundary-layer simplifications 

The nondimensionahzed vaersion of Equations I 5 based on the 
OberbcckkBoussinesq approximatton. but without boundary- 
layer assumptions is the following: 

v.v=o (13) 

141 

Pe V VO = V’O (15) 

where we have used the following nondimenstonal groups: 

(x, y) = (.L J.1, 

H 

(c. v) = ([I- 1’) 

I’, 
(16) 

The boundary conditions shown in Figure 7. for the 
configuration shown in Figure l(a), arc as follows: 

A: 

v = 0; 0 = I (‘XI 

B: 

if1 
v = 0; =o 

iY 
(19) 

C: 

?V (‘0 
-E-=0 
?Y C’Y 

(20) 

D: 

C’ = 1; 0 = 0 (21) 

E: 

(‘21 

t 

L 9 i 

Yj- 

Y 

t 

Computational domain for the complete Darcy formula- 
non (wlthout boundary layer assumptions) 

The Kusselt number at the downstream end of the wall is 
the folloGrg: 

It is worth noting that Nu,, can be compared directly with 
the solution obtained from Equations 8-I 1. for the case Pe = I. -. The wall-av’eraged ISusselt number Nu IS calculated as follows 
using Equation I?: 

Nu 2 I 
i 

&, ,\ 

PC;,’ 111 + 1 6,,, y” 
[ - O’(<, 0)] d,’ 

Numerical methods and results 

(24) 

The numerical problem consists of solving either Equations 
X 1 I or Equations 13 22. The equations obtained with 
boundary-layer approximations were solved by the local 
nonsimilarity method (Chen, 1988) and by the finite element 
method. The equations without boundary-layer approxima- 
ttons were solved by the finite element method. 

The second level of truncation local nonsimilarity method 
was applied to Equations 8-l 1. The method consisted of 
differentiating Equations 8-l 1 with respect to <. In the new 
equations, we set II = ?,f !?< and (p = ?O,/?<. Neglecting the 
terms that contain i2( )/ii2, we obtain the following equations: 

= (II ~ rn)<(ll’$ - h@) 

and the following boundary conditions: 

(26) 

rj = 0: /l =o; (f)=o (27) 

‘1 4 % : h’ = 0; d,=o (2X) 

The numerical task is reduced to solving the boundary-value 
problem represented by the ordinary differential Equations 
8-l 1 and 25-28. In the application of the shooting method, 
convergence was guaranteed in the entire t-range (0 5 5 < 100) 
by using a search scheme to detect the appropriate initial 
guesses for /“(<. 0). W(f, 0). g’(i;. O), and @(t. 0). This search was 
necessary because as < increases, the formulation based on the 
scales of forced convection becomes inappropriate for natural 
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convection. and convergence becomes considerably more 
difficult. 

The fourth-order Runge-Kutta method was used to integrate 
the equations. The tolerance for convergence was IO-“. The 
values of ~7, = 10 and At1 = 0.02 were determined by trial and 
error (Chen, 1988), so that the same results wet-c obtained with 
finer meshes and larger ‘1, domains. The 10 -’ convergence 
criterion was applied directly to the boundary conditions for 
,I“, /I’, 0. and (i, at u = 11,. To ensure the convergence to an 
asymptotic solution. the rfY values of (1’ and f”’ were checked 
simultaneously according to the same tolerance. Numerical 
computations were carried out for 171 = 0. I 3. and I 2 and 1 for 
0 I < 5 100. The local Nusselt numbers are reported in Figures 
3 and 4. 

In the application of the semidiscrete finite element method: 
i.e., we leave < continuous to begtn with and reduce the system 
8-11 to a single equation that WC discretize in ‘1, Equation 8 
can be integrated twice in 4 to produce an expression for f. 
which can then be substituted into Equation 9. Performing this 
operation, using the boundary conditions /’ = I and 0 = 0 at 
,I + X, we obtained the following: 

If wc utilize quadratic shape functions (Hughes. 1987) for the 
discretization: 

(1 = 1 NJ,, (30) 
8, 

we obtain integrals of the shape functions required by 
Equation 29 via the following: 

lN,=(:;3-;;‘);1 (31) 

y 3 \ 
IN2 = ; -\ 

i 1 
AL’1 

Ii21 

,N3&yl,A;l (33) 
I - 

From 1 = 0. 0 = I at ~1 = 0 (< = ~ I) and Equations 31- 33 in 
the first element of the 11 domain. we obtained the following: 

q(r) = ; A’l 
c 

5 
-2 I7 3 

(34) 
\ - 

v 

100 

Figure 3 Comparison of results between the local nonsrmilarrty 
method and finite elements wrth boundary-layer approxrmatrons 

Figure 4 Comparison of results between the local nonsimilarity 
method and finrte elements without boundary-layer approximations 
(complete formulation) 

Next. usrng the quadratic shape functions and Equations 31-33. 
WC write the following for one element: 

(35) 

I (37) 

Therefore, WC numerically treat Equation 9, where we 
substrtute Equations 35 -37 for .f; 1“ and ?f/?<, subject to the 
temperature boundary conditions. Because this equation is 
parabolic. the problem is solved implicitly with the backward 
Euler approach for the time-like discretization; i.e., the 
discretizatton in 1. The initial condition H(O,q) is obtained 
directly from the finite elements solution of Equation 9, when 
<= 0. The weighting space is defined by the following: 

3 = j\l,/!i,EH’. w(0) = w(q,) = 0) (38) 

The Galerkin discrctization is applied after deriving the weak 
form of the problem. The matrix formulation is expressed 
schematically as follows: 

R’ = QfdJ).,J’- ,~(d,)-di -  d’-’ = ( )  

A< 

The Newton-Raphson method is applied in conjunction with 
a line starch scheme to solve the nonlinear system. The last 
converged solution for the previous value of < is used as the 
predictor for the new < solution. 

Accuracy tests were performed for several combinations of 
‘1,. A+ and A<. We concluded that ~7 ~ = 10: At! = 0.02: and 
A< = 0. I IS the coarsest set, which leads to same results as finer 
sets. Two convergence criteria were tested for the Newton 
iteration R’ , < IO 7 and Ad’!+. R’k’ < lo- lsA&o’. R’o’, Both 
criteria led to practically identical results. 

Numerical results were obtained for rrr = l/2 and l/3. which 
arc shown in Figure 3. The procedure diverges after < = 9.6 for 
111 = I 2, and after 6 = 9.2 for 1~ = l/3. The results are in good 
agreement with the results based on the local nonsimilarity 
method. The transformed equations were nondimensionalized 
using the scales of forced convection scale analysis; therefore, 
convergence became more difficult as < increased. To achieve 
convergence for high values of <. Cebeci and Bradshaw (1991) 
suggested a set of transformed equations based on natural 
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convection scales. Bccausc after i = O(10) natural convection 
dominates, and the results approach the asymptote known for 
natural convection. we found it necessary to implement the 
Cebeci and Bradshaw formulation. 

Equations 13-22 were solved using the finite element 
package FIDAP (1991). The method consisted of Galerkin 
weighted residuals, and nine nodes tsoparametric quadratic 
elements. Figure 4 shows the results for m = 1:3 and 112 (i.e., 
7 = 45 and 60 ). when Pe = 1. These results cover the range 
0.1 5 RajPe 5 100. which. in this, case means 0. I 2 Ra I 100. 
Because our objective was to compute Nu,, for each case, we 
also used Nu, to perform accuracy and mesh tests: the results 
become independent of grid size for 4.941 nodes and 1,200 
elements, in the domain drawn to scale in Figure 2. 

Figure 4 shows that the results obtained with and without 
boundary-layer assumptions are in good agreement. These 
results were obtained for Pe = I and 0.1 I Ra 5 100 using 
Darcy’s law. Regardless of method, the solution approaches the 
forced convection asymptote for small < and the natural 
convection asymptote for large 5. The computational time 
needed for the solutions based on boundary-layer formulation 
is much smaller than the time needed for the complete 
formulation; in conclusion. the agreement between all the 
solutions indicates that the problem can be solved with 
economically and reliably by using the boundary-layer 
formulation. The solution asymptotes are (Cheng. 1977: Bejan. 
1984): 

Nu 
~~ = - O’(0, 0) 
Pei ’ 

(forced convection) 

Nu., ~ = 0.4446’ = 
Pet ’ 

(natural convectlon) 

The numerical results prescntcd in Figures 3 and 4 arc 
correlated within 5’,,0 by an expression of the type 
recommended by Churchill ( 1977): 

Nu 
2 = [( -0.04m + 0.274rn + 0.564)” + 0.444”;” ‘1’ ‘I 
Pe: ’ 

1311 

where 0 < m 5 I. and 

n = 0.976 (I ~ m)‘+ 5”’ 1‘43) 

Figure 5 shows the wall-averaged Nussclt number as ;I 
function of the wedge half-angle. Results for 111 = 1 9 IOI- 
;’ = 18 ) were included in Figure 5. so that a smoother curve 
could be drawn. From the results show*n in Figures 3 and 4. 

Joshi. Y. and Gebhart, B 1985. Mixed convection in porous media 
adJacent to a vertical uniform heat flux surface. Int. J. Hrrrr Mass 
7ion\/er. 28, 17X3- I786 

Kim. S J and Vafx K. 1989. Analysis of natural convection about a 
certical plate embedded in a porous medium. Int. J. Hrut Mu.s,s 
hm/r~r, 32, 665 ~677 

Figure 5 Wall-averaged Nusselt number for 0 2 ,)I 5 1 L~I. F C.. Kulacki, I-. A. and Prasad, V. 1991. Mixed convection in 
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we learn that the local Nu value becomes independent of the - 
wedge angle when < = 10. Therefore, in the calculation of Nu 
using equation 24 w’e set t,,,,, = 10. The wall-averaged Nusselt 
number has the largest value when m = 0; i.e., when the wedge 
surfaces are oriented vertically. 

Conclusions 

In this paper, we developed several new heat-transfer solutions 
for wedge-shaped bodies embedded in a porous medium with 
forced, mixed, or natural convection. New solutions are 
obtained for the wedge with uniform surface temperature when 
VI = I :3. 1’2, and I (Le.. ;’ = 45 ,60 and 90 ). We showed that 
it is possible to calculate the mixed convection phenomenon in 
the range of low Ra and low Pe numerically by using a 
formulation with boundary-layer approximations. We demon- 
strated this using three numerical methods: (1) local 
nonsimilarity; (2) finite elements in a boundary-layer 
formulation; and (3) finite elements in a formulation without 
boundary-layer approximations. The three sets of results are 
in very good agreement. 

The computational time for solutions with the boundary- 
layer approximations is much smaller than with the time 
required by the complete formulation. The agreement between 
results indicates that the problem can be solved economically 
using the boundary-layer formulation. In the range 0 I m I 1, 
the overall thermal conductance between the surface and the 
surrounding medium (or the wall-averaged Nusselt number 
Nu) is the largest when the wedge surface is vertical (m = 0). 
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